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ABSTRACT

X This report forms the user’s guide for Version 1.0 of LSSOL, a set of Fortran 77 subroutines for ,NOSUAEury v
[ " lincarly constrained linear lcast-squares and convex quadratic programming. The method of LSSOL cTeo b
q 8 3 <
is of the two-phase, active-set type, and is related to the method used in the package SOL/QPSOL , RO
g -{Gill et al., 1984b}._Two main features of LSSOL are its cxploitation of convexity and trcatment o)
of singularity.

LSSOL may also be used for linear programming, and to find a feasible point with respect to a

2 set of linear inequality constraints. LSSOL treats all matrices as dense, and hence is not intended
. for large sparse problems. . | . T St AP, YN Y : o
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s 1. PURPOSE 1
. 1. PURPOSE
-~ LSSOL is a collection of Fortran 77 subroutines designed to solve a class of quadratic programming
i problems that are assuined to be stated in the following general formn:
,_ LCLS minimize F(z)
) zER™"
) z
w subject to £ < { } <u,
) Cz
where C is m, X n (m, may be zero) and F(z) is one of the following objective functions:
o FP: None (find a feasible point for the constraints)
. LP: cTz
:.: QP1: %zTA:c A symmetric and positive semi-definite,
) QP2: Tr + %:cTA:c A symmetric and positive semi-definite,
'- QP3: %:z:TATAz A m x n upper-trapezoidal,
] QpP4: cTz + %zTATAz A m X n upper-trapezoidal,
LS1: Lip - Az|? Amxn,
LS2: cTz + 1||b - Az|f? Amxn,
h LS3: 316 — Az|)? A m x n upper-trapezoidal,
LS4: Tz + %Hb — Az|? A m x n upper-trapezoidal,
. with ¢ an n-vector and b an m-vector. The specific objective function to be minimized is selected
using the optional parameter Problem Type (sce Section 4.2). In all that follows, problems of
[ ] type “LP”, “QP” and “LS” will be referred to as linear programming, quadratic programming and

T constrained least-squares problems respectively,
The constraints involving C will be called the general constraints. Note that upper and lower
bounds are specified for all the variables and for all the general constraints. An equality constraint
is specified by setting {; = u;. If certain bounds are not present, the associated elements of £ or u
can be set to special values that will be treated as —~oo or +00. (See the description of the optional
- parameter Infinite Bound in Section 4.2.)

The constant second-derivative matrix of F(x) is defined as H, the Hessian matrix. In the
LP case, H = 0. In QP cases 1 and 2, H = A; and in QP cases 3 and 4, H = ATA. In all LS
cases, /I = ATA. Problems of type QP3 or QP4 with A not in trapezoidal form should be solved
as type LS1 or LS2 with b = 0. When considering problems of type LS, we shall refer to A as the
least-squares matrix and to b as the vector of observations.

The user must supply an initial estimate of the solution. If the Hessian niatrix is non-singular,
LSSOL will obtain the unique (global) minimnm. If H is singular, the solution may still be a global
minirmumn if all active constraints have nonzero Lagrange multipliers. Otherwise, the solution
obtained will either be a weak minimum (i.e., with a unique optimal objective value, but an
i infinite set of optimal z), or else the objective function is unbounded below in the feasible region.

The last case can occur only when F(z) contains an explicit linear term (as in problems of type
LP, QP2, QP4, LS2 and LS4).
: The LSSOL package contains approximately 6000 lines of ANSI Fortran 77, of whick about
50% are comments.
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2. DESCRIPTION OF THE ALGORITHM

Here we briefly sumnmarize the main features of the method of LSSOL. Where possible, explicit
reference is made to the names of variables that are parameters of snbroutine LSSOL or appear in
the printed output.

The method of LSSOL is a two-phase (primal) quadratic programming method (see Gill et al.,
1984b) with features to exploit the convexity of the objective function. (In the full-rank case, the
method is related to that of Stoer, 1971.) The two phases of the method are: finding an initial
feasible point by minimizing the sum of infeasibilities (the feasibility phase), and minimizing the
quadratic objective function within the feasible region (the optimality phase). The computations
in both phascs are performed by the same subroutines. The two-phase nature of the algorithm is
reflected by changing the function being minimized from the sum of infeasibilities to the quadratic
objective function. The feasibility phase does not perform the standard simplex method (i.e., it
does not necessarily find a vertex), except in the LP case when m, < n. Once any iterate is feasible,
all snbsequent iterates remain feasible.

In general, an iterative process is required to solve a quadratic program. (For simplicity, we
shall always consider a typical iteration and avoid refercnce to the index of the iteration.) Each
new iterate Z is defined by

i=z+ap, (1)

where the step length a is a non-negative scalar, and p is called the scarch direction.

At each point z, a working set of constraints is defined to be a linearly independent subset
of the constraints that are satisfied “exactly” (to within the tolerance defined by the optional
parameter “Feasibility Tolerance”; see Section 4.2). The working set is the current prediction
of the constraints that hold with equality at a solution of LCLS. The scarch direction is constructed
so that the constraints in the working set remain unaltered for any value of the step length. For
a bound constraint in the working set, this property is achieved by setting the corresponding
component of the search direction to zero. Thus, the associated variable is fixed, and specification
of the working set induces a partition of z into fixed and free variables. During a given iteration,
the fixed variables are effectively removed from the problem; since the relevant components of the
search dircction are zero, the columns of C corresponding to fixed variables may be ignored.

Let m,: denote the number of general constraints in the working set and let ngx denote the
number of variables fixed at one of their bounds (m,, and ngx are the quantities “Lin” and “Bnd”
in the printed ontput from LSSOL). Similarly, let ngp (negn = n — ngy) denote the munber of free
variables. At every iteration, the variables are re-ordered so that the last nyx variables are fixed,
with all other relevant vectors and matrices ordered accordingly. The order of the variables is
indicated by the list of indices KX, a parameter of LSSOL.

Let Cpy denote the my, x ngp submatrix of general constraints in the working sct corresponding
to the free variables, and let p,y, denote the search direction with respect to the free variables only.
The general constraints in the working set will be unaltered by any move along p if

CerPen = 0. (2)
In order to compute pyy,. the TQ factorization of Cyp is used:
CexQrr = ( 0T )’ (3)

where T is a nonsingular m,, x m,, reverse-triangular matrix (i.e., t;; == 0if i + j < m,;), and the
non-singular n,, % nyx matrix Qs is the product of orthogonal transformations (sce Gill et al.,
1984a). If the columns of Q. are partitioned so that

QFR:(Z Y)’ (4)




[: 2. DESCRIPTION OF THE ALGORITHM 3
where Y is n., X myy, then the n, (n, = ngq — my ) columns of Z forin a basis for the null space

! of Cer. Thus, pey will satisfy (2) only if

- Pen = 4P; (5)

T

v for some vector p,.

- Let Q denote the n x n matrix

Q - (QPR ) , (6)

- Iex

- where I, is the identity matrix of order nyx. Let R denote an n X = upper-triangular matrix (the
Cholesky factor) such that

= Q"HQ = RR, ()
and let the matrix of first n, rows and columns of R be denoted by R,. (Recall that H in (7) will

in general have been re-ordered.)

h The definition of p, in (5) depends on whether or not the matrix R, is singular at z. In the
non-singular case, p, satisfies the equations

. R:Rzpz = —8z (8)

where g, denotes the vector ZTg., and g denotes the objective gradient. (The norms of gy is
the printed quantity Norm Gf.) When p, is defined by (8),  + p is the minimizer of the objective
function subject to the constraints (bounds and general) in the working set treated as equalities.
In general, a vector f, is available such that RZ}'Z = —g,, which allows p, to be computed from
a single back-substitution R,p, = f,. For example, when solving problem LS1, f, comprises the
first n, elements of the transformed residual vector

f = P(b- Az), 9

which 1s recurred from one iteration to the next, where P is an orthogonal matrix.
In the singular case, p, is defined such that

R.p: =0 and g%p, <. (10)

This vector has the property that the objective function is linear along p and may be reduced by
any step of the form z + ap, a > 0.

The vector ZTg, . is known as the projected gradient at z. If the projected gradient is zero,
r is a constrained stationary point in the subspace defined by Z. During the feasibility phase, the
projected gradient will usually be zero only at a vertex (although it may be zcro at non-vertices in
the presence of constraint dependencies). During the optimality phase, a zero projected gradient
implies that & minimizes the quadratic objective when the constraints in the working set are treated
as cqualities. At a constrained stationary point, Lagrange multipliers Ac and A, for the general
and bound constraints are defined from the equations

C;'rn’\c = Orr and Ap = 9ex — Cg‘x’\c' (11)

Given a positive constant 8 of the order of the machine precision, the Lagrange multiplier A;
corresponding to an inequality constraint in the working set is said to be optimal if A; < & when
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> the associated constraint is at its upper bound, or if A; > —§ when the associated coustraint is

at its Jower bound. If a multiplier is non-optimal, the objective function (cither the trme objective

Oy or the sum of infeasibilities) can be reduced by deleting the corresponding constraint (with index

';:-: Jdel: see Scction 5) from the working set.

:_ If optimal multipliers occur during the feasibility phase and the suin of infeasibilities is nonzero,

- there is no feasible point, and LSSOL will continue until the minimum value of the sum of infeasi-

P bilities has been found. At this point, the Lagrange multiplier A; corresponding to an inequality
; constraint in the working set will be such that —(1 4+ 8) < A; < & when the associated constraint

[t': is at its upper bound, and -8 < A; <'1-+ 6 when the associated constraint is at its lower bound.

' Lagrange multipliers for equality constraints will satisfy [Aj| <1+ 6.

[ _ The choice of step length is based on remaining feasible with respect to the satisfied constraints.
o If R, is nonsingular and z + p is feasible, @ will be taken as unity. In this case, the projected

P gradient at £ will be zero, and Lagrange multipliers are computed. Otherwise, a is set to «,,, the

step to the “nearest” constraint (with index Jadd; see Section 5), which is added to the working
sct at the next iteration.

If A is not input as a triangular matrix, it is overwritten by a triangular matrix R satisfying
(7) obtained using the Cholesky factorization in the QP case, or the QR factorization in the LS case.
Column interchanges are used in both cascs, and an estimate is made of the rank of the triangular
factor. Thereafter, the dependent rows of R are elimminated from the problem.

Each change in the working set leads to a simple change to Cry: if the status of a general
constraint changes, a row of Cy, is altered; if a bound constraint enters or leaves the working set,
a column of Cy, changes. Explicit representations are recurred of the matrices T, Qry and R; and
of vectors QTy, QTc and f, which are related by the formulae

b

[/

"{(r‘ i ‘y

R
f=Pb- ( 0 ) Q'z (b =0 for the QP casc),

N

<
7

and

Q79 = QT - Rf.

Note that the triangular factor R associated with the Hessian of the original problemn is updated
during both the optinality and the feasibility phases.

The treatment of the singular case depends critically on the following feature of the matrix
updating schemes used in LSSOL: if a given factor R, is non-singular, it can become singular
during subsequent iterations only when a constraint leaves the working sct, in which case only its
Iast diagonal element can become zero. This property implies that a vector satisfying (10) may
be found using the single back-substitution R,p, = e,, where R, is the matrix R, with a unit
last diagonal, and ¢, is a vector of all zeros except in the last position. If H is singular, the
matrix R (and hence R;) may be singnlar at the start of the optimality phase. However, R, will
be non-singular if enough constraints are included in the initial working set. (The null matrix is
positive definite by definition, corresponding to the case when Cyy, contains ny, constraints.) The
idea is to include as many general constraints as necessary to ensure a non-singular I2,.

At the beginning of each phase, an upper-triangular matrix R is determined that is the largest
non-singnlar leading submatrix of R,. The use of interchanges during the factorization of A tends
to maximize the dimension of R;. (The rank of R; is estimated using the optional parameter Rank
Tolerance: sec Scection 4.2.) Let Z; denote the colnmns of Z corresponding to Ry, and let Z be
partitioned as Z = ( Z; Z3 ). A working set for which Z; defines the null space can be obtained

T T e e M e e T e e T e e e L o e e e e e e ° S T L e e, e T T
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a
-

A ON
P

JHR

"~
Je
>

~

2. DESCRIPTION OF THE ALGORITHM 5

by including the rows of ZT as “artificial constraints™. Minimization of the objective function then
procecds within the subspace defined by Z,.
The artificially augmented working set is given by

Crn = ( Z;lv ) ’ (12)

so that p., will satisfy Cpyper = 0 and Zérpm = 0, By definition of the TQ factorization, Cyy
autowatically satisfies the following:

_ Cer Cen
CFRQH«:(ZT)QH«:(ZT)(ZI Za Y):(O T),

2 2

) (0 T)
T = :
I 0

and henee the TQ factorization of (12) requires no additional work.

The matrix Z5 need not be kept fixed, since its role is purely to define an appropriate null space;
the T(Q factorization can thercfore be npdated in the normal fashion as the iterations proceed.
No work 15 required to “delete” the artificial constraints associated with Z, when Zngrn = 0,
since this simply invelves repartitioning Q.. When dcciding which constraint to delete, the
“artificial” multiplier vector associated with the rows of ZzT is equal to ZJg,5, and the multipliers
correspouding to the rows of the “true” working set are the multipliers that would be obtained if
the temporary constraints were not present.

The number of colunns of Z and Z,, the Euclidean norm of Z;Tgm, and the condition estimator
of Ry appear in the printed output as Nz, Nz1, Norm Gz1 and Cond Rzl (see Section 5).

where

Although the algorithm of LSSOL does not perform simplex steps in general, there is one
exception: a linear program with fewer general constraints than variables (i.e., m, < n). (Use
of the situplex method in this situation leads to savings in storage.) At the starting point, the
“natural” working set (the set of constraints exactly or nearly satisfied at the starting point)
i1s augmented with a suitable number of “temporary™ bounds, each of which has the effect of
temporarily fixing a variable at its current value. In subsequent iterations, a temporary bound is
treated as a standard constraint until it is deleted from the working set, in which case it is never
added again.

One of the most important features of LSSOL is its control of the conditioning of the working
set. whose nearness to linear dependence is estimated by the ratio of the largest to simallest diagonals
of the TQ factor T (the printed value Cond T: see Section 5). In constructing the initial working set,
constraints are excluded that would result in a large value of Cond T. Thereafter, LSSOL allows
constraints to be violated by as much as a user-specificd Feasibility Tolerance (see Section
4.2} in order to provide, whenever possible, a choice of constraints to be added to the working set
at a given iteration. Let ay, denote the maximum step at which z + a,,p does not violate any
constraint by more than its feasibility tolerance. All constraints at distance a (¢ < ay,) along p
from the current point are then viewed as acceptable candidates for inclusion in the working set.
The constraint whose normal makes the largest angle with the search direction is added to the
working set. In order to ensure that the new iterate satisfies the constraints in the working sct as
accurately as possible, the step taken is the exact distance to the newly added constraint. As a
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consequence, negative steps are occasionally permitted, since the cnrrent iterate may violate the
constraint to be added by as much as the feasibility tolerance.

LSSOL has been designed to be efficient when used to solve a sequence of related problems:- -for
example, within a scquential quadratic programming method for nonlinearly constrained optimiza-
tion (c.g., the NPSOL package of Gill et al., 1986). In particular, the user may specify an initial
working set (the indices of the constraints belicved to be satisfied exactly at the solution); sce the
discussion of the optional paramcter Warm Start in Section 4.2.
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3. SPECIFICATION OF SUBROUTINE LSSOL
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3. SPECIFICATION OF SUBROUTINE LSSOL
The formal specification of LSSOL is the following:

SUBROUTINE LSSOL ( M, N,

NCLIN, NROWC, NROWA,

Cc, BL, BU, CVEC,

ISTATE, KX, X, A, B,
INFORM, ITER, OBJ, CLAMDA,
IW, LENIW, W, LENW )

INTEGER M, N, NCLIN
NROWG, NROWA, INFORM, ITER, LENIW, LEKW
INTEGER ISTATE(N+NCLIN), KX(N), IW(LENIW)
REAL 0BJ
REAL C(NROWC,*), BL(N+NCLIN), BU(N+NCLIN),

CVEC(»), X(N), A(NROWA,»*),
B(*), CLAMDA(N+NCLIN), W(LENW)

Note: Here and elsewhere, the specification of a parameter as REAL should be interpreted as working
precision, which may be DOUBLE in some installations.

3.1. Formnal parameters

M

NCLIN

NROWC

NROWA

BL

AT M e vt e
LIPS R Sy W DA TP ]

(Input) The number of rows in the array A. If the problem is specified as type FP or
LP (sce Section 4), M is not referenced and is assumed to be zero.

If the problem is of type QP, M will usually be N, the number of variables. However, a
value of M less than N is appropriate for QP3 or QP4 if A is an upper-trapezoidal matrix
with M rows. Similarly, M may be used to define the dimension of a lecading block of
non-zeros in the Hessian matrices of QP1 or QP2, in which case the last N — M rows and
columns of A are assumed to be zero. In the QP case, M should not be greater than N;
if it 1s, the last M — N rows of A are ignored.

If the problem is specified as type LS1, LS2, LS3 or LS4, M is also the dimension of the
array B. Note that all possibilities (M < N, M = N and M > N) are allowed.

(Input) The number of variables, i.e., the dimension of X. (NN must be positive.)

(Input) The number of general lincar constraints in the problem. (NCLIN may be
7€10.)

(Input) The declared row dimension of C. (NROWC must be at least 1 and at least
NCLIN.)

(Input) The declared row dimension of the array A. (NROWA must be at least 1 and
at least M.)

(Input) A real array of declared dimension (NROWC,*), where the second dimension
must be at least N. The i-th row of C contains the coeflicients of the i-th general
constraint, £ = 1 to NCLIN. If NCLIN is zero, C is not accessed; the actnal parameter
may then be any convenient array or an array with dimension (1,1).

(Input) A real array of dimension at least N+ NCLIN that contains the lower bounds
for all the constraints, in the following order (which is also observed for BU, ISTATE,
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BU

CVEC

ISTATE

PV R

and CLAMDA): the first N clements of BL contain the lower bounds on the variables: if
4CLIN > 0, the next NCLIN elements of BL contain the lower bounds for the general
linear constraints.  In order for the problem specification to be meaninglfud, it is
required that BL(7) << BU{(j) for all 7. To specify a non-existent lower bound (i.c.,
£, — -x). the value used must satisfy BL(j) < --BIGBND, where BIGBND is the value of
the optional parameter Infinite Bound, whose default value is 101? (see Section 4.2).
To specify the j-th constraint as an equality, the user must set BL(7) = BU(3) = 73,
say, where }f3] < BIGBND.

(Input) A real array of dimension at least N+ NCLIN that contaius the upper bounds
for all the constraints. in the same order described above under BL. To specify a
non-existent upper bound (i.e., u; = oo), the value used must satis{y BU(y) > BIGBND.

(Input) A real array of dimension at least N containing the coeflicients of the explicit
lincar term of the objective function. If the problem is of type FP, QP1, QP3, LS1 or
LS3. CVEC is not accessed; CVEC ay then be declared to be of dimnension (1), or the
actual parameter may be any convenient array.

{(Input) An integer array of dimension at least N + NCLIN. ISTATE need not be
mitialized if Cold Start (the defaunlt) is specified. For a Warm Start, ISTATE specifies
the desired status of the constraints at the start of the feasibility phase. The ordering
of ISTATE is the same as that described above for BL, i.c., the first N components of
ISTATE refer to the upper and lower bounds on the variables, and compoucnts N + 1
through N + NCLIN refer to the upper and lower bounds on Cz. Possible values for
ISTATE are:

ISTATE(j) Meaning
0 The corresponding constraint should not be in the initial working set.
1 The constraint should be in the initial working sct at its lower bound.
2 The constraint should be in the initial working sct at its upper bound.

3 The constraint should be in the initial working set as an equality. This
value must not be specified unless BL(7) = BU(j). The values 1, 2 or 3
all have the same effect when BL(j) = BU(j).

Other values of ISTATE are also acceptable. In particular, if LSSOL has been called
previously with the same values of N and NCLIN, ISTATE already contains satisfactory
inforiation.

(Output) If LSSOL cxits with INFORM = 0, 1 or 3, the values in the array ISTATE in-
dicate the status of the constraints in the active set at the solution. Qtherwise, ISTATE
indicates the composition of the working set at the final iterate. The significance of
each possible value of ISTATE(F) is as follows:

ISTATE(j) Meaning
-2 The constraint violates its lower bound by more than the feasibility tol-
erance.
-1 The constraint violates its upper bound by more than the feasibility
tolerance.
0 The constraint is satisfied to within the feasibility tolerance, but is not

in the working set.
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1 This inequality constraint is included in the working sct at its lower
bound.

2 This inequality constraint is included in the working set at its upper
bound.

3 The constraint is included in the working sct as an equality. This value
of ISTATE can occur only when BL(j) = BU(j).

(Input) An integer array of dimension at least N. KX must be defined on input for
problems QP3, QP4, LS3 or LS4, i.c., problems in which A is specified as an upper-
trapezoidal matrix. KX must define the order of the columns of the matrix A with
respect to the ordering of X. Thus, if KX(1) = 5, column 1 of A is the column associated
with variable X(5). For problems of type FP, LP, QP1, QP2, LS1 or LS2, KX need not
be initialized.

(Output) KX gives the order of the columns of A with respect to the ordering of X,
as described above.

(Input) A real array of dimension at least N. X contains the initial estimate of the
solution.

{(Output) X is the last itcrate of LSSOL. If INFORM = 0, 1 or 3, X will be an estimate
of the solution.

(Input) A real array of dimension (NROWA,*), where the second diniension must be
at least N. A defines the data matrix A in LCLS.

If the problem is of type FP or LP, A is not accessed and may be dimensioned (1,1).

If the problem is of type QP1 or QP2, the first M rows and columns of A must contain
the leading M by M rows and columns of the symmetric Hessian matrix. Only the
diagonal and upper-triangular elements of the leading M rows and columns of A arg
referenced. The remaining elements are assumed to be zero and need not be assigned.

For problems QP3, QP4, LS3 or LS4, the first M rows of A must contain an M by N upper-
trapezoidal factor of either the Hessian matrix or the least-squares matrix, ordered
according to the KX array (sce above). The factor need not be of full rank, i.c., some of
the diagonals may be zero. However, as a general rule, the larger the dimension of the
leading non-singular submnatrix of &, the fewer iterations will be required. Elements
outside the upper-triangular part of the first M rows of A are assumed to be zero and
need not be assigned.

If a constrained least-squares problem contains a very large number of observations,
storage litnitations may prevent storage of the entire least-squares matrix. In such
cases, the user should transform the original A into a triangular matrix before the
call to LSSOL and solve the problem as type LS3 or LS4.

(Output) If the problem is of type LS or QP, A contains the npper-triangular matrix
R of (7), with columns ordered as indicated by KX (sce above). This matrix may
be used to obtain the variance-covariance matrix or to recover the upper-triangular
factor of the original least-squares matrix.

(Input) A real array of dimension at least M. If the problem is of type FP, LP or QP,
B is not accessed and may be dimensioned (1). If the problem is of type LS, B must
contain the vector of observations b in problem LCLS.
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(Output) On exit from a problem of type LS, B contains the transformed residual _
vector (9). mE
INFORM (Output) An integer that indicates the result of LSSOL. (If Print Level > 0, a o
short description of INFORM is printed.) The possible values of INFORM are: AN
INFORM Meaning RS
0 X is a strong local minimum. (The projected gradient is negligible, the r~ K
Lagrange multipliers arc optimal, and R, is non-singular.) oo
1 X is a weak local minimum. (The projected gradient is negligible, the
Lagrange multiplicrs are optimal, but R, is singular or there is a small o
multiplier.) This means that the final X is not nunique. Lol
ot
2 The solution appears to be unbounded. This valne of INFORM implies ‘
that a step as large as Infinite Bound would have to be taken in order S
to continue the algorithm. This situation can occur only when A is
singular, there is an explicit linear term, and at least one variable has
no upper or lower bound.
3 No feasible point was found, i.e., it was not possible to satisfy all the by =
constraints to within the feasibility tolerance. In this case, the constraint e
violations at the final X will reveal a value of the tolerance for which a .
feasible point will exist—for example, if the feasibility tolerance for each -
violated constraint exceeds its Residual at the final point. The modified .
problem (with an altered feasibility tolerance) may then be solved using U
a Warm Start (see Section 4). ! E
4 The limiting number of itcrations (determined by the parameters Feasi- ':~:::
bility Phase Iterations and Optimality Phase Iterations) was v
reached before normal termination occurred. LhoLo
5 The algorithm could be cycling, since a total of 50 changes were made )
to the working set without altering X. ]
6 An input parameter is invalid. :;'_;
(S
ITER (Output) An integer that gives the total number of iterations perforined in the sy
feasibility phase and the optimality phase. DR N
R
OBJ (Output) The value of the objective function at X if X is feasible, or the sum of o
infeasibilities at X otherwise. If the problem is of type FP and X is feasible, OBJ is zecro. .
CLAMDA (Output) A real array of dimension at least N + NCLIN that contains the Lagrange ) .-:’.;‘_
multiplier for every constraint with respect to the current working set. The ordering SO
of CLAMDA follows the convention given above under BL, i.e., the first N components o )
contain the multipliers for the bound constraints on the variables, and the remaining =
components contain the multiplicrs for the general linear constraints. If ISTATE(j) = 0 e
(i.c., constraint j is not in the working sct), CLAMDA(j) is zcro. If X is optimal, R
CLAMDA(j) should be non-negative if ISTATE(j) = 1 and non-positive if ISTATE(j) = 2. :
3.2. Workspace parameters .
Iv (Input) An integer array of dimension LENIW that provides integer workspace for ".‘-:

LSSOL.
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LENIW (Input) The dimension of IW. LENIW must be at least N.

W (Input) A real array of dimension LENW that provides real workspace for LSSOL.
LENW (Input) The dimcusion of W. If the problem is of type FP and N < NCLIN, LENW must

be at least 2N2 + 6N + 6 NCLIN. If the problem is of type FP and 0 < NCLIN < N, LENW
must be at least 2 (NCLIN + 1)% + 6N + 6 NCLIN. If NCLIN = 0, LENW must be at least
6N.

If the problem is of type LP aud N < NCLIN, LENW must be at least 2N% + 7N +6 NCLIN.
If the problem is of type LP and N > NCLIN > 0, LENW must be at least 2 (NCLIN +
1)2 + 7N + 6 NCLIN. If the problem is of type LP and NCLIN = 0, LENW must be at least
7N.

For problems QP1, QP3, LS1 and LS3, LENW must be at least 282 4+ ON + 6 NCLIN if
NCLIN > 0, and at least 9N if NCLIN = 0. For problems QP2, QP4, LS2 and LS4, LENW
must be at least 2N2 + 10N + 6 NCLIN if NCLIN > 0, and at least 10N if NCLIN = 0.

If Print Level > 0, the amounts of workspace provided and required are printed. As an alterna-
tive to computing LENIW and LENW from the formulas given above, the user may prefer to obtain
appropriate values from the output of a preliminary run with a positive value of Print Level and
LENIW and LENW set to 1. (LSSOL will then terminate with INFORM = 6.)

........
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4. OPTIONAL INPUT PARAMETERS

Several optional paranicters in LSSOL define choices in the problem specification or the algorithm
logic. In order to reduce the number of formal parameters of LSSOL, these optional paramcters
have associated default values (sce Scction 4.2) that are appropriate for most problems. Therefore,
the user need specify only those parameters whose values are to be different from their default
values. The remainder of this section can be skipped by users who wish to use the default values
for all optional paramcters.

Each optional parameter is defined by a single character string of up to 72 characters, con-
taining one or more items. The items associated with a given option must be scparated by spaces
or equal signs (=). Alphabetic characters may be upper or lower case. An example of an optional
parameter is the string

Print level = 6

For each option, the string contains the following items.

1. The keyword (required for all options).

2. A phrase (one or two words) that qualifies the keyword (only for some options).

3. A number that specifies either an INTEGER or a REAL value (only for some options).
Such numbers may be up to 16 contiguous characters in Fortran 77s I, F, E or D
formats, terininated by a space.

Blank strings and comments are ignored and mnay be used to improve readability. A cornment begins
with an asterisk (*) and all subsequent characters are ignored. If the string is not a comment and
is not recognized, a warning message is printed on the specified output device (sce Section 7.5).
Synonyms are recognized for some of the keywords, and abbreviations may be used.

The following are examples of valid option strings for LSSOL:

NOLIST

warm start

COLD START

Problem type = Least Squares

Problem type = LP

Problem Type QP4

Feasibility tolerance 1.0E-8 * for IBM in double precision
CRASH TOLERANCE = .002

* This string will be completely ignored.
Feasibility phase iteration limit 100
Optimality phase iteration limit = 10 »

4.1. Specification of the optional parameters

Optional parameters may be specified in two ways, as follows.

e Using subroutine LSFILE and an external file

The subroutine LSFILE provided with the LSSOL package will read options from an external options
file, and should be called before a call to LSSOL. Each line of the options file defines a single optional
parameter. The file must begin with Begin and end with End. (An options file consisting only of
these two lines corresponds to supplying no options.)

The specification of LSFILE is

SUBROUTINE LSFILE( IOPTNS, INFORM )
INTEGER IOPTNS, INFORM
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IOPTNS must be the unit number of the options file, in the range [0,99], and is unchanged on exit
from LSFILE. INFORM need not be set on entry. On return, INFORM will be 0 if the file is a valid
options file and IOPTNS is in the correct range. INFORM will be set to 1 if TOPTNS is out of range,
and will be set to 2 if the file does not begin with Begin or end with End.

An cxample of a valid options file is

Begin
Print level = 6
Problem type LP
End

If the options file is on unit number 5, it can be read by the call

CALL LSFILE( 5, INFORM )

e Using subroutine LSOPTN

The second method of setting the optional parameters is throngh a series of calls to the subroutine
LSOPTN provided with the LSSOL package. The specification of LSOPTN is

SUBROUTINE LSOPTN( STRING )
CHARACTER* (*) STRING

STRING must be a single valid option string (see above), and will be unchanged on exit. LSOPTN
must be called once for every optional parameter to be set. An example of a call to LSOPTN is

CALL LSOPTN( ’Print level = 5’ )

e Use of the Nolist and Defaults option

In geuncral, each user-specified optional parameter is printed as it is read or defined. By using the
special parameter Nolist, the user may suppress this printing for a given call of LSSOL. To take
effect, Nolist mmust be the first parameter specified in the options file; for example,

Begin

Nolist

Problem type LP
End

Alternatively, the first call to LSOPTN, before or after a call to LSSOL, must be
CALL LSOPTN( °’Nolist’ ).

All parameters not specified by the user are automatically set to their defauit values. Any
optional parameters that are set by the user are not altered by LSSOL, and hence changes to the
options are cumulative. For example, calling LSOPTN( ’'Print level = 5’ ) scts the print level
to 5 for all subsequent calls to LSSOL until it is reset by the user. The only exception to this
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rule is permitted by the special optional parameter Defaults, whose effect is to reset all optional

paramcters to their default values. For example, in the following situation

CALL LSsOL ( ... )

CALL LSOPTN( ’Print level 5’ )
CALL LSOPTN( ’Iteration limit = 100’ )
CALL LSSOL ( ... )

CALL LSOPTN( ’Defaults’ )
CALL LSSOL ( ... )

the first and last runs of LSSOL will occur with the defanlt parameter settings, but in the second
run, the print level and iteration limit are altered.

4.2. Description of the optional parameters

The following list (in alphabetical order) gives the valid options. For each option, we give the
keyword, any essential optional qualifiers, the default value, and the definition. The minimum
abbreviation of each keyword is underlined. If no characters of an optional qualifier are underlined,
the qualifer may be omitted. The letter @ denotes a phrase (character string) that qualifies an
option. The letters ¢ and r denote INTEGER and REAL values required with certain options. The
number € is a generic notation for machine precision.

Cold Start Default = Cold Start
Warm Start

This option specifies how the initial working set is chosen. With a cold start, LSSOL chooses
the initial working set based on the values of the variables and constraints at the initial point.
Broadly speaking, the initial working set will include equality constraints and bounds or inequality
constraints that violate or “nearly” satisfy thetr bounds (to within Crash Tolerance; see below).

With a warm start, the user must provide a valid decfinition of every clement of the array
ISTATE (see Section 3 for the definition of this array). LSSOL will override the user's specification
of ISTATE if necessary, so that a poor choice of the working set will not cause a fatal error. A warm
start will be advantageous if a good estimate of the initial working set is available- -for example,
when LSSOL is called repeatedly to solve related problems.

Crash Tolerance T Default = .01

This value is used in conjunction with the optional parameter Cold Start (the default value) when
LSSOL selects an initial working set. If 0 < r < 1, the initial working set will include bounds or
general inequality constraints that lie within = of their bounds. In particular, a constraint of the
form (‘JT.B > | will be included in the initial working set if [c]Ta: —<r(1+Y). r<Qorr>1,
the defanlt value 1s used.

Feasibility Phase Iteration Limit i Default = max(50,5(n + m,))
Optimality Phase Iteration Limit ia Default = max(50,5(n + m,.))

The scalars £, and i3 specify the maximum number of iterations allowed in the feasibility and opti-
inality phases. Optimality Phase Iteration Limit is equivalent to Iteration Limit. Setting
i3 = 0 and Print Level > 0 mcans that the workspace needed will be computed and priuted, but
no iterations will be performed.
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. Feasibility Tolerance T Default = (/e
v If r > 0, r defines the maximum acceptable ahsolute violation in each constraint at a “feasible”
point; i.e., a constraint is considered satisfied if its violation does not exceed r. For example, if the
" variables and the cocfficients in the general constraints are of order unity, and the latter are correct
w7 to about 6 decimal digits, it would be appropriate to specify r as 1075, If » < 0, the default value
is used.
=
Infinite Bound Size r Default = 101°
. If r > 0, r defines the “infinite” bound BIGBND in the definition of the problem constraints. Any
- upper bound greater than or equal to BIGBND will be regarded as plus infinity (and similarly for a
- lower bound less than or equal to ~BIGBND). If r <0, the default value is used.

Infinite Step Size r Default = max(BIGBND, 10?)

If r > 0, r specifies the magnitude of the change in variables that will be considered a step to
an unbounded solution. (Note that an unbounded solution can occur only when the Hessian is
- singular and the objective contains an explicit linear term.) If the change in z during an iteration
e would exceed the value of Infinite Step, the objective function is considered to be unbounded
below in the feasible region. If r < 0, the default value is used.

Iteration Limit 1 Default = max(50,5(n + m.))
Iters

. Itns

Sce Feasibility Phase Iteration Limit above.

- Optimality Phase Iteration Limit i Default = max(50,5(n + m.))
Sce Feasibility Phase Iteration Limit above.
o
Print Level i Defaunlt = 10
The value of i controls the amount of printout produced by LSSOL, as indicated below.
. 1 Output
0 No output.
1 The final solution only.
5 One line of output for each iteration (no printout of the final solution).
- > 10 The final solution and one line of output for each iteration. : :t::‘:
- > 20 At cach iteration, the Lagrange multipliers, the variables z, the constraint * .
. values Cx and the constraint status. ‘:_ ’
. > 30 At each itcration, the diagonal elements of the matrix T associated with the TQ ’\.

]

.
)

factorization (3) of the working sct, and the diagonal clements of the triangular KO
e matrix R. -

)
‘l

.
.
{3

Problem Type a Default = LS1

This option specifies the type of ¢ ,:ctive function to be minimized during the optimality phase,
. The following are the ten optional keywords and the dimensions of the arrays that must be specified

@
I
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to define the objective function:

FP A, B and CVEC not accessed;

LP A and B not accessed, CVEC(N);

QP1 A(NROWA,N) symmetric, B and CVEC not rcfércnccd;

QP2 A(NROWA ,N) symmetric, B not referenced, CVEC(N);

QP3 A(NROWA,N) upper-trapezoidal, XX(N), B and CVEC not referenced;
QP4 A(NROWA,N) upper-trapezoidal, KX(N), B not referenced, CVEC(N);
Ls1 A(NROWA,N), B(M), CVEC not rcferenced;

LS2 A(NROWA,N), B{M), CVEC(N);

LS3 A(NROWA,N) upper-trapezoidal, KX(N), B(M), CVEC not rcferenced;
LS4 A(NROWA,N) upper-trapezoidal, KX(N), B(M), CVEC(N).

The options Least Squares and LSQ are equivalent to the default option LS1. The options
Linear programand Quadratic programare equivalent to LP and QP2 respectively. If A = 0, i.c.,
the objective function is purely linear, the efficiency of LSSOL may be increased by specifying a as
LP (or Linear Program).

Rank Tolerance r Default = /e

If 0 < 7 < 1, r enables the user to control the estimation of the rank of A and the triangular factor
R, (see Section 2). If p; denotes the function p; = max{|Ry1],|Rz22|,...,|Rii|}, the rank of R is
defined to be smallest index i such that |R;1:41] < 7|piy1]- If r < 0 or 7 > 1, the default value is
used.

4.3. Optional parameter checklist and default values

For easy reference, the following sample LSOPTN list shows all valid keywords and their default
values. The default options Feasibility Tolerance and Rank Tolerance depend upon ¢, the
relative precision of the machine being used. The values given here correspond to double precision
arithmetic on IBM 360 and 370 systems and their successors (¢ &~ 2.22 x 10 !%). Similar values
would apply to any machine having about 16 decimal digits of precision.

* List of optional parameters.

Cold Start *

Crash Tolerance .01 *
Feasibility Tolerance 1.1E-8 x e
Infinite Bound 1.0E+10 * Plus infinity
Infinite Step 1.0E+10 *
Feasibility Phase Iteration Limit 50 * or 5(n +m,)
Optimality Phase Iteration Limit 650 * or 5(n 4 m,)
Print Level 10 *

Problem Type Least squares #* or LS1

Rank Tolerance 1.1E-8 * \Je
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' 5. DESCRIPTION OF THE PRINTED OUTPUT
.~ This section describes the intermediate printout produced by LSSOL. To aid interpretation of the
printed results, we repeat the convention for numbering the constraints: indices 1 through N refer to
:-: the bounds on the variables, and indices N + 1 through N + NCLIN refer to the gencral constraints.
A When the status of a constraint changes, the index of the coustraint is printed, along with the
designation “L” (lower bound), “U” (upper bound), “E” (equality), “T” (temporary bound) or “2”
o (artificial constraint).
" When Print Level > 5, the following line of output is produced at every iteration. In all
cases, the values of the quantities printed are those in effect on completion of the given iteration.
N Itn is the iteration count.
< Jdel is the index of the constraint deleted from the working set. If Jdel is zero, no
) constraint was deleted.
T Jadd is the index of the constraint added to the working set. If Jadd is zero, no
- constraint was added.
; Step is the step taken along the computed search direction. If a constraint is added
é during the current iteration (i.e., Jadd is positive), Step will be the step to the

nearest constraint. During the optimality phase, the step can be greater than
one only if the factor R, is singular.

Ninf is the number of violated constraints (infeasibilities). This numnber will be zero
during the optimality phase.

Sinf/Objective is the value of the current objective function. If X is not feasible, Sinf gives
. a weighted sum of the magnitudes of constraint violations. If X is feasible,
Objective is the value of the objective function of LCLS. The output line for
the final iteration of the feasibility phase (i.e., the first iteration for which NINF
is zero) will give the valuc of the true objective at the first feasible point.

During the optimality phase, the valuc of the objective function will be non-
. increasing. During the feasibility phase, the number of constraint infeasibilities
will not increase until either a feasible point is found, or the optimality of the
multipliers implies that no feasible point exists. Once optimal multipliers are
obtained, the number of infeasibilities can increase, but the sum of infeasi-
bilities will either remain constant or be reduced until the minimum sum of

‘ infeasibilities is found.

-— Bnd is the number of simple bound constraints in the current working set.
Lin is the number of general linear constraints in the current working set.
Nz is the number of columns of Z (see Section 2). The value of Nz is the number
: of variables minus the number of constraints in the working sct; i.e., Nz =
e M- (Bnd + Lin). A zero value of Nz implies that z lies at a vertex of the feasible
region.
Nz1 is the number of columns of Z; (see Section 2). Nzi is the dimension of the

subspace in which the objective function is currently being minimized. If Nz1
is less than Nz, the current R, is singular.

Norm Gf is the Euclidean norm of the gradient of the objective function with respect to
H the free variables, i.c., variables not currently held at a bound.
Norm Gz1 is {{ZTg..]l. the Euclidean norm of the projected gradient with respect to Z;.
" During the optimality phase, this norm will be approximately zero after a unit
- step.
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" 4
u Cond T is a lower bound on the condition number of the working set. =
i | " | " E
x Cond Rz1 is a lower bound on the condition number of the triangunlar factor Ry (the first T
_: Nz1 rows and columns of the factor R,. If the problem is specified to be of _n’
::. type LP, or the estimated rank of the data matrix A is zero, Cond Rzl is not " ",
- printed. i A
<, 3
. When Print Level = 1 or Print Level > 1), the summary printout at the end of execution = '.
. of LSSOL includes a listing of the status of every variable and constraint. Note that default names o
are assigned to all variables and constraints.
The following describes the printout for each variable. -
Variable gives the name (VARBL) and index § (7 = 1 to N) of the variable. o
I State gives the state of the variable (FR if neither bound is in the working set, EQ if !
T a fixed variable, LL if on its lower bound, UL if on its upper bound). If Value oo
lies outside the upper or lower bounds by more than the feasibility tolerance, oo
State will be “++” or “--" respcctively. .
: Value is the value of the variable at the final iteration. Xy
. Lower bound is the lower bound specified for the variable. (“None” indicates that BL(j) < = .
—BIGBND.) s
Upper bound is the upper bound specified for the variable. (“None” indicates that BU(7) > :j' -
BIGBND.) o
Lagr multiplier is the valuc of the Lagrange multiplier for the associated bound constraint. This co v
I will be zero if State is FR. If X is optimal, the multiplier should be non-negative . E__
. if State is LL, and non-positive if State is UL. i :',_‘:
- Residual is the difference between the variable “Value” and the ncarer of its bounds oo
BL(j) and BU(j). AR
i The meaning of the printout for general constraints is the same as that given above for vari- o
ables, with “variable” replaced by “constraint”, with the following change in the heading: F

Linear constr is the name (LNCON) and index i (i = 1 to NCLIN) of the constraint.
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6. ERROR RECOVERY
Termination Recommended Action

Underflow A single underflow will always ocenr if machine constants are computed automat-
ically (as in the distributed version of LSSOL; see Section 7). Other floating-point
underflows may ocenr occasionally, but can usually be ignored.

Overflow If the printed outpnt before the overflow error contains a warning about serious
ill-conditioning in the working sct when adding the j-th coustraint, it may be pos-
sible to avoid the difficulty by increasing the magnitude of the optional paramecter
Feasibility Tolerance and rerunning the program. If the message recurs even
after this change, the offending linearly dependent constraint (with index “;7)
must be removed from the problem. If a warning message did not precede the
fatal overflow, contact the authors at Stanford University.

INFORM = 3 LSSOL has terminated without finding a feasible point, which means that no fea-
sible point exists for the given feasibility tolerance. The user should check that
there are no constraint redundancies. If the data for the constraints are accurate
only to the absolute precision o, the user should ensure that the value of the op-
tional parameter Feasibility Tolerance is greater than o. For example, if all
elements of C are of order unity and are accurate only to three decimal places, the
optional parameter Feasibility Tolerance should be at least 10 73,

INFORM = 4 The value of the optional parameter Iteration Limit may be too small. If the
method appears to be making progress (e.g., the objective function is being sat-
isfactarily reduced), increase the iterations limit and rerun LSSOL (possibly using
the warm start facility to specify the initial working set). If the iteration limnit is
already large, but some of the constraints could be nearly linearly dependent, check
the output for a repeated pattern of constraints entering and leaving the working
set. (Near-dependencies are often indicated by wide variations in size in the di;
agonal elements of the T matrix, which will be printed if Print Level > 30.) In
this case, the algorithm could be cycling (see the comments for INFORM = 5).

INFORM = § This value will occur if 50 iterations are performed without changing X. The user
should check the printed outpnt for a repeated pattern of constraint deletions and
additions. If a sequence of constraint changes is being repeated, the iterates are
probably cycling. (LSSOL does not contain a method that is guaranteed to avoid
cycling: such a method would be combinatorial in nature.) Cycling may occur in
two circumstances: at a constrained stationary point where there are some small
or zero Lagrange multipliers; or at a point (usnally a vertex) where the constraints
that are satisfied exactly are nearly linearly dependent. In the latter case, the user
has the option of identifying the offending dependent constraints and removing
them from the problem, or restarting the run with a larger value of the optional
parameter Feasibility Tolerance. If LSSOL terminates with INFORM = 5, but
no suspicions pattern of constraint changes can be obscrved, it may be worthwhile
to restart with the final X (with or without the warm start option).
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7. IMPLEMENTATION INFORMATION

7.1. Format of the distribution tape

The source eode and example program for LSSOLL are distributed on a magnetic tape containing 7

files. The tape characteristies are deseribed in a document accompanying the tape; normally they

are 9 track, 1600 bpi, unlabeled, ASCII, 80-character records (card images), 4800-character blocks.
The following is a list of the files and a summary of their contents. For reference purposes we

give a name to each file. However, the names will not be recorded on unlabeled tapes. The MACH

and LSCODE files are composed of several smaller sonrce files described in Section 7.3.

File Name Type Cardst Description
1. DPMACH FORTRAN 450 Double-preciston source file 1: MCSUBS
2. DPLSCODE FORTRAN 8250 Double-precision source fles 2-5: BLAS, ..., 0PSUBS
3. DPLSMAIN FORTRAN 260 Donble-precision source file LSMAIN
4. LSMAIN DATA 6 Options file for LSMAIN
5. SPMACH FORTRAN 450 Single-precision source file 1
6. SPLSCODE FORTRAN 8250 Single-precision source files 2-5
7. SPLSMAIN FORTRAN 260 Single-precision version of file 3

t Approximate figure.

One MACH and one LSCODE file should be selected for any given installation. DPMACH and
DPLSCODE are intended for machines that generally require double precision compntation. Examples
include IBM Systems 360, 370. 3033, 3081, ctc.; Amdahl 470, Facom, Fujitsu, Hitachi, and other
systems analogous to IBM; DEC VAX systems; Data General MV/8000; ICL 2900 series; recent
PRIME systems; DEC Systeins 10 and 20; Honeywell systems; and the Univac 1100 series.

SPMACH and SPLSCODE are intended for machines for which single precision is suitably accurate
for munerical computation. Examples include the Burroughs 6700 and 7700 series; the CDC 6000
and 7000 series and their Cyber counterparts; and the Cray-1.

7.2. Installation procedure

1. Obtain the appropriate MACH and LSCODE files from the tape.

2. If necessary, edit the subroutine MCHPAR according to Section 7.5.

3. Decide whether or not to split the LSCODE file into files BLAS through OPSUBS as suggested in
Scction 7.3.

4. Compile all the routines that werc originally in the LSCODE files together with those from MACH.
Run them in conjunction with the main program LSMAIN from either File 3 or File 7 and the
options given in file LSMAIN DATA. Check the output against that shown in Section 8.

7.3. Source files

LSSOL has been written in ANSI (1977) Fortran and tested on an IBM 3081K computer using the
IBM Vortran 77 compiler VS Fortran. Certain nnavoidable machine dependencies are confined to
the routine MCHPAR.

The source code is divided into 5 logical parts. For case of handling, these are combined into
the MACH and LSCODE files on the distribution tape, but for subsequent maintenance we recommend
that 5 separate files be kept. In the description below we suggest a name for each file and summarize
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its purpose. We then list the names of the Fortran subroutines and functions involved. The namning
convention used should minimize the risk of a clash with user-written routines.

File 1. MCSUBS  Computes machine-dependent constants.
MCHP4R  MCEPS MCENVL  MCENV2  MCSTOR

File 2. BLAS Basic Lincar Algebra Subprograms (a subset).
DASUM DAXPY DCOPY DDOT DNRM2 DSWAP DSCAL IDAMAX
These routines are functionally similar to members of the BLAS package (Lawson et al.,
1979). If possible they should be replaced by authentic BLAS routines. Versions may
exist that have been tuned to your particular machine.

DGEMV DGER1
These routines are functionally similar to members of the Level 2 BLAS packages (Don-
garra ot al., 1985).

DCOND DDIV DDSCL DLOAD DNORM DSSQ DSWAP ICOPY
IDRANK ILOAD

Thesc are additional utility routines that could be tuned to your machine. DLOAD is used
the most frequently, to load a vector with a constant value.

DROT3 DROT3G  DGEAPQ DGEQR DGEQRP DGRFG
These linear algebra routines are used to compute and update various matrix factoriza-
tions in LSSOL.

File 3. CMSUBS  General utility routines.

CMALF CMALF1  CMCHK CMFEAS  CMPRT CMQMUL  CMRSOL  CMRSWP
CMRIMD  CMTSOL

File 4. LSSUBS  Least-squares routines.

LSADD LSADDS LSBNDS LSCHOL LSCORE LSCRSH LSDEL LSDFLT
LSFEAS LSFILE LSGETP LSGSET LSKEY LsLOC LSMOVE  LSMULS
LSOPTN  LSPRT LSSETX LSSOL

File 5. OPSUBS  Option string handling routines.
OPFILE OPLOOK  OPNUM OPSCAN OPTOKN  OPUPPR

7.4. Common blocks

Certain Fortran COMMON blocks are used in the LSSOL source code to communicate between sub-
routines. Their names are listed below.
CMDEBG LSDEBG LSPAR1 LSPAR2 SOL1CM SOL3CM S0L4CM SOL5CM
SOL6CM SOLMCH SOL1LS SOL3LS

7.5. Machine-dependent subroutines

The routine MCHPAR in the MACH file may require modification to suit a particular machine or a
non-standard application.
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At the beginning of LSSOL, MCHPAR is called to assign the machine-dependent constants and
the standard input and output nnit numbers. These parameters are stored in the array WMACH(15)
in the labeled COMMON block SOLMCH, and are defined as follows.

WMACH(1) is NBASE, the base of floating-point arithmetic.
WMACH(2) is NDIGIT, the number of NBASE digits of precision.
WMACH(3) 1s EPS, the floating-point precision.

WMACH(4) is RTEPS, the square root of EPSMCH.

WMACH(5) is RMIN, the smallest positive floating-point number.
WMACH(6) is RTMIN, the squarc root of RMIN.

WMACH(7) is RMAX, the largest positive floating-point number.
WMACH(8) is RTMAX, the square root of RMAX,

WMACH(10) is NIN, the file number for the input stream.
WMACH(11) is NOUT, the file number for the ontput stream.

Within routine MCHPAR, the machine constants are set one of two ways, depending upon the
value of the logical variable HDWIRE, which is set in-line.

If HDWIRE is .FALSE. (the value set for the distributed copy of MCHPAR), the machine constants
are computed automatically for the machine being used. If HDWIRE is . TRUE., machine constants
appropriate for the IBM 360 Series are assigned directly to the elements of WMACH.

Before selecting the method of assigning the machine constants, you should note the following.
The computation of the machine constants will always generate a single arithmetic underflow, and
hence some appropriate remedial action may nced to be taken if your machine traps underflow.

If yon wish to implement the in-line assignment of machine constants for a machine other than
ouce from the IBM 360/370 Series, MCHPAR must be modified as follows.

1. Change the in-line assignment of HDWIRE from .FALSE. to .TRUE..

2. Set the values of WMACH appropriate for the machine and precision being used. The values of
NBASE. NDIGIT. EPSMCH, RMIN and RMAX for several machines are given in the following table,
for both single and double precision; RTEPS, RTMIN and RTMAX may be computed using Fortran
statements. The values NIN and NOUT depend on the machine installation.

For each precision, we give two values for EPSMCH, RMIN and RMAX. The first value is a For-

tran decimal approximation of the exact quantity; use of this value in MCHPAR should cause

no difficulty except in extreme circumstances. The second value is the exact mathematical
representation.
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7. IMPLEMENTATION INFORMATION 28 .:-::
Table of machine-dependent parameters e
IBM 360/370 | CDC 6000/7000 | DEC 10/20 Univac 1100 DEC Vax s
Single Single Single Single Single :i;i:
-.-‘l'
NBASE 16 2 2 2 2 N
NDIGIT 6 48 27 27 24 ‘_
EPS 9.54E-7 7.11E-15 7.46E-9 1.50E-8 1.20E-7 -
165 947 9-27 926 9-23 L-;,f
RMIN 1.0E-78 1.0E-293 1.0E-38 1.0E-38 1.0E-38 .
1655 9-975 9-129 9-129 9-128 "
RMAX 1.0E+75 1.0E+322 1.0E+38 1.0E+38 1.0E+38 -
1663(1_16—6) 2!070(1_2—48) 2127(1_2~27) 2127(1_2#27) 2127(142*24)
IBM 360/370 | CDC 6000/7000 | DEC 10/20 Univac 1100 DEC Vax =
Double Double Double Double Double "::::
NBASE 16 2 2 2 2 A
NDIGIT 14 96 62 61 56 A
EPS 2.22D-16 2.53D-29 2.17D-19 8.68D-19 2.78D-17 g
16-13 9-95 9-62 9-60 9-55 o
RMIN 1.0D-78 1.0D-293 1.0D-38 1.0D-308 1.0D-38 -
1665 9-975 9-129 9-1025 9-128 L
RMAX 1.0D+75 1.0D+322 1.0D+38 1.0D+307 1.0D+38 ‘*h'
1663(1_16—14) 21070(1_2‘96) 2127(].”2-62) 21023(1~2-61) 2!27(1 ‘2~56) L
oY
A
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8. EXAMPLE PROBLEMS

This section describes a linear least-squares problem and a gnadratic program; the sample main
program LSMAIN that calls LSSOL and the output are given in the Appendix.

The first problem is a constrained least-squares problem of type LS1 with nine variables and
three general lincar constraints. The least-squares matrix and vector of observations are given by

( 1 1 1 1 1 1 1 1 l\ (1\
1 2 1 1 1 1 2 0 ¢ 1
1 1 3 1 1 1 -1 -1 -3 1
1 1 1 4 1 1 1 1 1 1
A= 1 1 1 3 1 1 1 1 1 and b= 1
1 1 2 1 1 0 0 0 -1 1
1 1 1 1 0 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1
1 1 0 1 1 1 2 2 3 1
\ 1 0 1 1 1 1 0 2 2) kl]

The least-squares matrix has rank 6. Let £ in LCLS be partitioned into two sections: the first n
components (denoted by £5), corresponding to the bound constraints; and the last m, components
(denoted by £,), corresponding to the linear constraints. The vector u is partitioned in a similar
fashion. Using this notation, the upper and lower bounds on the variables are given by

£y = (-2, -2, -o0, -2, -2, -2, -2, -2, -2)T
wp=(2 2, 2 2 2 2 2 2 2T

and the general constraints are given by

_ 2 1 1 1 1 1 1 1 1 4 fors]
LL=] —0}, C= 1 2 3 4 -2 1 1 1 1 and u, =] -2
-4 1 -1 1 -1 1 1 1 1 1 -2

The starting point zg 1s
zo = (.1, .5, .3333, .25, .2, .1667, .1428, .125, .1111)7,
and F(z¢) = 9.4746 (to five figures). The optimal solution (to five figures) is
Z = (2.0000, 1.5719, —1.4454, -.037003, .546685, .17512, —1.6567, —.39477, .31002 )7,

and F (z*) = 1.390587. All three general linear constraints are satisficd exactly at £ The Lagrange
multiplier associated with the third general constraint is of the order of the machine precision, and
therefore the point £ is a weak minimum, i.e., the optimal objective function is unique, but is
achieved for infinitely many valucs of z.
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The second problem is a quadratic programming problem of type QP2 with a semi-definite
Hessian matrix and linear term given by

(

"

(%)

and c= -1
-1
-1

\ )

(Note that by setting M = 5, we need not assign the last four rows and columns of 4 to zero.)
The upper and lower bounds on the variables are given by

[T B — R R T R )
(=T =T = Y R L i -
O OO O e = DO = =
OO O O =N e e
OO OO N e e e e
(=R R T — I o= I = A — A — N =
(=R~ R R - A — 2 = T — I ]
[=T I~ I -2 2~ — I — Ry
o O O C O o o o o
—

tp=(-2, -2, -2, -2, -2, -2, -2, -2, -2)7
up=( 2, 2, 2 2 2 2 2 2 2T
and the general constraints are given by
-2 1 1 1 1 1 1 1 1 4 1.5
L,=1-214, C=( 1 2 3 4 -2 1 1 1 1) and uw, = |15
1 -1 1 -1 1 1 1 1 1 4
The starting point zq is the zero vector, at which F(zo) = 0. The optimal solution (to five figures)

18

& = (2.0, —.23333, —.26667, —.3, —.1, 2.0, 2.0, —1L.7777, —.45555 )T,

and F(m*) = —8.067778. The first two linear constraints are satisfied exactly at the solution, as are
the upper bounds on variables z;, £¢ and z;. Note that, although the Hessian matrix is positive
semi-definite, the point £ is unique,
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APPENDIX. SAMPLE PROGRAM AND OUTPUT

VRNV L URN -

X £ X K X X X X

NEFFLEFPEIE IR IR F R F PR PR R FFH PR IPFR LI RN RN IF R LR RR NN LRI NN PN

*
%*
*

AR A A R e AR R A i R R Il I e L R e e Y YT Y2 S T 22

XK A KK KK

FILE LSHAIN FORTRAM

Sample program for Version 1.0 January 1986,

IMPLICIT

DOUBLE PRECISION({A-H,0-Z)

Set the declared array dimensions.

NROWC
NROWA
MAXN
MAXM
MAXBND
LIKORK
LWORK

PARAMET
$
$
$

INTEGER
INTEGER
DOUSLE
OOUBLE
DOUBLE
DOUBLE
DOUBLE

DCUBLE
CiARACT

INTRINS

PARAMEY
FARAMET
PARAMET
FARANET

BIGEHD
CESBND

ER

PRECISION
PRECISICN
PRECISION
PRECISION
PRECISION

PRECISION
ER*10

Ic

ER
ER
ER
ER

N W

= 1.0D*t15
= *1.00%15"

the declared row dimension of C.

the declared row dimension of A.

naximum no. of variables allowed for.

maximm no. of observations allowed for.
maximum no. of variables + linear constraints.
the lergth of the integer work array.

the length of the double precision work array.

(NROWC = 3, NROWA = 10,
MAXN = 9, MAXM = 10,
LIKORK = 60, LWORK = 900,
MAXBHD = MAXN + NROWC )

KX{MAXN), ISTATE(MAXBND)

IHORK ( LIHORK)

C{NROWC,MAXN), B(MAXM)

BLIMAXBND ), BU(MAXBND)» CLAMDA(MANBND)
CVEC(MAXN)

A(NRORA,MAXN), X(MAXN)

RORK{ LRORK)

BIGBND
CBGShD

FLOAT

POINT1=0.1D%0, POINT3=0.3D+0, ONEPT5=1.5D+0
ZERO =0.0D+0, OME =1.0D+0, TWO =2.00+0
THREE =3.0D%0, FOUR =4.00+0, FIVE =5.0D+%0
SIX =6.0Dt0

Set the actusl problem dimensions.
= the murbor of observations (rows of A) (may be 0).
= the number of variables.
= the number of general linear constraints (may be 0).

o]
N
NCLIN

M

N
NCLIN
[Sisih)

PR

10
9
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3
N * NCLIN
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. 56 SO
" 57 %  cccceemcnn-- —— -——- .
" 58 # Assign file numbers and problem data. .o
- 59 # NOUT = the unit number for printing. Y
> 60 * IOPTNS = the unit rumber for reading the options file. ORI
-, 61 % A = the least-squares matrix. N
<, 62 * B = the vector of observations. w
63 * c = the gcneral constraint matrix. "=
64 » BL = the lower bounds on x and Cwx. o
- 65 » BU = the upper bounds on x and C#x. o
66 * X = the initial estimate of the solution.
2 67 ¥ = cmeemceenccccmccccrrcmccccrcdceemsnas e —————- - -
- 68 IOPTNS = § -
= 69 NOUT =6
= 70 —_
7 DO 120 J = 1, N
. 72 DO 110 X =1, M .
L 73 AlX,J) = E .
-~ 74 B(I) = CME
- 75 110 CONTINUE
76 120 CONTINUE
X 77 .
-\ 78 A(2 ,2) = WO ﬁ
- 79 Al10,2) = ZERO
AL 80
. a1 A(3,3) = THREE P
82 Al6,3) = TWO
a3 Al19,3) = ZEPO
&4
- 85 A(G,4) = FOUR
€5 Al5,4) = THEREE v
87 AlLg,6) = ZERO
- 83
- 89 At7,5) = ZERO
90 .
91 A(6,6) = ZERO }‘._'
™ 92 o
- 93 AC2 ,7) = THO
¥ 94 A(3 ,7) = - oS
95 Al6 ,7) = ZEFO .
- 96 A9 ,7) = U9 -
97 A(10,7) = ZERO S
N 98 t
- 99 A(Z ,8) = ZERO . e
100 Al3 ,8) = - OME e
- 101 Al ,8) = ZERO : -
2 102 A(9 ,81 = TWO
= 103 A110,8) = TWO
104 -
: 105 A(2 ,9) = ZERO ct
106 A(3 ,9) = - THREE
L 107 Al6 +9) = - ONE
- 108 A9 ,9) = THREE .
. 109 A(10,9) = o \
\ 110 [
- .-‘
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AR

114

144

148

152
153
134
155
156
157
158
159
163
161
162
163
164
165

x X % X

*

130
160

150

170

$

DO 140 J = t» N

DO 130 1 = 1, NCLIN
CtI,J) = ONE

CONTINUE

CONTINUE

c(1,9) = FOUR

C(2,2) = TWO

€(2,3) = THREE

Ct2,4) = FOUR

C(2,5) = - THO

C(3,2) = - ONE

€(3,4) = - ONE

DO 150 J = 1, N
8L(J) = - TO
BU(Ji =  TWO

CCNTINUE

BLC 3) = - BIGEND

Set the ranges for the general constraints.

BLIN*1) = TWO
BUIN*1) =  BIGBND
BL(N*2) = - BIGEND
BU(N*2) = - TKO
BLIN*3) = ~ FOUR
BU(N+3) = - THO

DO 170 J = 1, N
X(J) = ONE / FLOAT(J)
CONTINUE

Read the options file.
Add a3 single cption using a call to LSOPTN.

e e e T e

CALL LSFILE( IOPTNS, INFORM )

IF CINFOTM .NE. 0) THEN
WRITE (NOUT, 3000) INFORM
sST0?

END IF

CALL LSCPTN( 'Infinite Bound size ='//CBGBND )

et mmecE e, .- ———— - - - - ————————

CALL LSSOL ( M, N,
NCLI{i, NRCUC, NROWA,
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- E
$ C» BL, BU, CVEC, e
$ ISTATE, KX, X A, B, S e,
$ INFCRM, ITER, OBJ, CLAMDA, A
$ IMORK, LINORK, WORK, LWORK ) A
-
PR
* Test for an error condition. Lo
o
IF (INFORM .GT. 1) GO TO 999 -
* ST S ST EE ISR SIS TSI ZIISIESSTSTIRIRTSSSISITI=EsSsSSIsx f" l‘f’:"
* Example 2. A GP with Hessian bordered by zeros. - e
»* 2 ittt it bttt S S 2 b bt S S b 3 '\'-
* Set the now problem dimensions. AN
» ] = the nurber of rows (and coluwns) of A (may be 0). DN
* N = the number of variables. T e e
» RCLIN = the number of scneral linear constraints (may be 0). !
* CVEC = the linear part of the objective function. , -
M =5 RO
N =9 B
NCLIN = 3
NBHD = N + NCLIN SO
DO 220 J =1, M =
DO 210 I = 1, J-1 '
A(I,J) = ONE .
210 CONTINUE -
220 COMTINUE Lo
D0 230 I =1, N -
AL, X} = TWO CIN,
230 COMTINUE .
DO 260 J = 1, N oo
BL(J) = -
BU(J) = THO SCERE
260 CONTINUE
. \‘Q
BLIN*1) = - THO <
BU(N*1) =  ONEPTS \
BLIN*2) = = TWO LR
BU(N#2) =  OMEPTS RIS
BLIN*3) = - THO
BU(N*3) =  FOUR .
00 270 4 = 1, N RS
CVEC(J) = - ONE <N
270 CONTINUE E
CVEC(1) = - FOUR -
CVEC(8) = - FOINT! S
CVEC(9) = - POINT3 ‘

DO 280 J = ¥, N
X{J) = ZERO
280 CONTINUE
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K -
.

221
222
223 % ——— -——-
. 224 = Assign some new options.
-~ 225 % mmememcecceemeee—cm—meewe ——————
=" 226
22 CALL LSOPTH( ‘'‘Defaults ')
228 CALL LSOPTH( 'Problem type QP2' )
» 22 CALL LSOPTN( 'Rank tolerance = 1,0E-10° )
' 230 CALL LSOPT™N( 'Feasibility tolerance = 1,0E-10' )
- 231
F& TR SR P LT EL L P -
‘e 233 » Solve the QP problem.
o 234 # = =memeececcamaccccnmee- cemmm————— cemmm—————- —————— -
- 235
235 CALL LSsoL ( M, N,
237 $ NCLIN, NROWC, NROWA,
233 $ C, BL, BU, CVEC,
239 $ ISTATE, KX, X, A, B,
249 $ INFORM, ITER, OBJ, CLAMDA,
241 $ IHORK, LIKWORK, WORK, LWORK )
242
263 % Test for an error condition.
26%
245 IF (INFORM .GT. 1) GO TO 999
266 STOP
247
248 * Error condition.
249
250 999 WRITE (NOUT, 3010) INFORM
251 STOP
2c2
253 3000 FORMAT(/ ' LSFILE terminated with INFORM =*', I3)
256 3010 FORMAT(/ ' LSSOL terminated with INFORM =', I3}
a5
256 % End of the exomple programs for LSSOL.
c57
258 END
ARSI YT, T, PR " e S LA B, P Ay T P S L A A Pi¥ RO VL
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OPTIONS file mE
- e 2 .ﬁ‘ b'f
-.: o ::-'
:_ BEGIN Optiors for LSSOL 1.0 Sample problem. v PO
f e 5"-
>~ Iterations Limit = 25 R :-\":
- Problem Type = Least squares AL A
S
End
| w K
\\. .'-- *
> Calls to LSOPTN -
o Infinite Bound size =1.00%15 o
l! AR
. SOL/LSSOL =--- Version 1.0 Feb 1986 KR
(-': Parawetors s

Problem type....veenn.. LSt

Linrear comstraints..... 3 Feasibility tolerance.. 1.49E-08 COLD start..v.vcecnanes -
Voriables..eieceeecsnane 9 Infinite bound size.... 1.00EMS Crash tolerance........ 1.00E-02 et
Objective matrix rows.. 10 Infinite step size..... 1.00E*15 Rark tolerance......... 1.49E-08 o

EPS (machine precision) 2.22E-16 Feasibility phase ttns. 60 Print level...cicvennee 10 )
Optimality phase itns. 25 -t

Norkspace provided is IM( 60), MN( 900).
To solve problem wa need IN( 9) MW 261),

Rank of the objective function data matrix = 6

Itn Jdel Jadd Step Ninf Sint/Objective Bnd Lin Nz Nzt Norm Gf Norw 6z1 Cond T Cond Rz1
[} 0 0 0.0E*00 2 9.974603E%00 0 0 9 0 6.B6E*0D O0.00E*0D 1.0E*00 0.DE*00 .
] 1Z 10L 1.2E+00 2 5.987698E400 0 1 8 0 6.86E*00 O0.00E+00 1.0E+00 O.0E*00 -
S 1z 11U 4.VE-O01 1 4.990079E+00 0 4 7 0 3.00E400 O.00E*00 1.1E*00 O0.0E+00 .
3 1z 12U 3.7E%00 0 4.959041E401 0 3 6 6 S.60E*0V 4. 13E*0Y 2.3E400 2.2E+0V
4 ] 1V 3.0E-01 ] 2.429930E401 1 3 5 5 3.89E+01 2.85E%0! 2.4E400 4.8E00
S [} [} 1.0E*+00 ] 1.390587E~01 1 3 5 5 6.55E-01 1.59E-15 2.4E*00 4.BE+00 (e

Exit from LS problem after 5 tterations. INFORM = -

Variable State Value Lower bound Upper bound Logr multiplier Residual

VARBL ¢ uL 2.000000 =-2.000000 2.000000 -0.1191932 0.0000E+00
VARBL 2 FR 1.571959 -2.000000 2.000000 0.0000000E+00 0.4280
VARBL 3 FR  =1.445403 None 2.000000 0.7 *MM000E+00 3.445
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! VARBL 4 FR -0.370027SE-01 -2.000000 2.000000 0.0000000E*00 1.963
- VaRBL 8 FR 0.54668%8 -2.000000 2.000000 0.0000000E+00 1.453
VARBL 6 FR 0.1751236 -2.000000 2.000000 0.0000000E+00 1.825
.- VAR3L 7 FR -1.656704 ~2.000000 2.000000 0.0000000E+00 0.3433
AN vAapL 8 FR -0.3947742 -2.000000 2.000000 0.0000000E*00 1.605
;a VARBL 9 FR 0.3100290 -2.000000 2.000000 0.0000000E¢00 1.690
» Linear corstr State Value Lower bound Upper bound Llagr multiplier Restdual
! LHCON 1 L 2.000000 2.000000 None 0.3973107E-01 -0.3553E-14
* LHcon 2 uL ~2.000000 None -2.,000000 =0.1191932 -0.4219E-14
LHieon 3 UL -2.000000 -4.000000 -2.000000 0.2006660E-1S -0.4441E-15
Exit LSSOL -~ Weak LS solution.
Final LS objective value = 0.1390587
- Calls to LSOPTN
Defaults
- Problem type QP2
'Bs Rank tolerance = 1.0E-10

Feasibility tolerance = 1,0E-10

Parameters
Problem type.......000. QP2
Lincar comstraints..... 3 Feasibility tolerance.. 1.00E-10 COLD start.ccvcvvacecns
Vuriubles.ciieieienas 9 Infinite bound size.... 1.00E*10 Crash tolerance........ 1.00E~02
’ Chjective matrix rows.. 5 Infinite step stze..... 1V1.00E+10 Rank tolerance......... 1.00E-10
! EPS (mochine precision) 2.22E-16 Feasibility phase 1tns. 60 Print level......c00ess 10
B . Optimality phase itns. 60
Morkspace provided is INC 60), NI 900), *
To solve probles we need IH( 9)» Wt 270).
Rarnk of the objective function data matrix = 5
.'-_ Itn Jdel Jadd Step Ninf Sinf/Objective Bnd Lin Nz Nzt Norm &% Norm 629 Cond ¥ Cond Rzt
] [} 1] 0.0E+00 0 0.000000E+00 0 [} 9 5 4.70E%00 4.47E*00 2.9E00 1.3E400
1 0 U 7.5E-01 0 -4.375000E+00 1 [} 8 4 1.53E400 5.00E-01 2.9E+00 1.3E*00
4 0 [ 1.0E400 [} ~4.400000E+400 1 0 8 & 1.45E+400 3.67E-17 2.4E+00 1.3E+00
- 3 5Z 10U 3.0E-01 0 -4.700000E+00 1 1 7 4 1.45E*00 B.94E-0V 11.0E*00 1.0E*00
- 4 0 0 t.0E*00O 0 ~5.100000E+00 1 1 7 4 2.47E+00 1.20E-17 1(1.0E*00 1.0E*0O
as 5 7z 12U 5.4E-01 [} -6.055714E%00 1 2 6 4 2.47E+00 1.73E+00 2.0E¢00 §.3E¢00
6 0 6U 1.1E-02 0 -6.113326E400 2 4 5 3 2.2°7%00 t.64E*00 2.0E*00 1.7E*00

S

Y.

e
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Lower bound Upper bound

7 0 11U 1.1E-0¢ 0 -6.215049E+00 2
8 0 0 1.0E*00 [} -6.538008E¢00 2
9 3z 0 t.0E*00 o -6.567373E400 2
10 4Z VU 1.7E400 [} -8.055612E+00 3
1R 0 0 1.0E%00 [ -8.067718E+00 3
12 12U [ 1.0E+00 0 -8.067776E400 3
Exit from QP problem after 12 iterations. INFORM =
Variable State Value Lower bound
VARBL uL 2.000000 ~2.000000
VARDL 2 FR -0.2333333 -2.000000
VARBL 3 FR -0.2666667 -2.000000
VARBL & FR -0.3000000 ~2.000000
VARBL & FR -0.1000000E*00 -2.000000
VARBL 6 uL 2.000000 ~2.000000
VARDL 7 UL 2.000000 -2.000000
VARBL 8 FR -1.777778 -2.000000
VARBL 9 FR -0.4555556 ~-2.000000
) Lirear constr State Value
! LHCON 1 UL 1.500000 -2.000000
. LHCON 2 UL 1.500000 -2.000000
. LNCON 3 FR 3.933333 -2.000000

. Exit LSSOL - Optimal QP solution.

final QP objective value =

PO

r s G e -

-8.067778

@ PWEWWHWUW
EETRT R 2 R 4

Upper bound

2.000000
2.000000
2.000000
2.000000
2.000000
2.000000
2.000000
2.000000
2.000000

1.500000
1.500000
4.000000

Suvivinm

2.03E400
1. 10E+00
1.07E%00
3.83E-01
4,.38E-01
4.31E-01

1.18E+00
2.22€E-16
2.23E-16
2.82E-01
1.05E-16
1.05E~16

Lagr multiplier

~0.8000000
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00

-0.9000000

-0.9000000
0.0000000E+00
0.0000000E+00

Lagr multiplier

-0.6666667E-01
~0.3333333E-01
0.0000000E+00

PR PV L DS |

2.1E400
2.1E400
2.1E+00
2.1E%00
2.1E+00
1.2E%00

Residual

1.5E+00
1.5C+00
2.7E+00
3.7E%CO
3.7E+00
5.8E+00

0.0000E+00

1.767
1.733
1.700
1.900

0.0000E+00
0.0000E+00

0.2222
1.544

Residual

-0.3553E-14
0.2220E-15
0.6667€E-01

FIPNE WA Wy
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INDEX Diagonals

A (objective data matrix), 1.
estiiuated rank of, 4, 16, 18.
identically zero, 16 (also see Linear program).
A, 9 (definition).
Algorithm of LSSOL, description, 2-86.
a (step length), 2, 4
printed value, 17.
an (step to nearest constraint), 5.
Amdahl 470, 20.
ANSI (1977) Fortran, 1, 20.
Artificial constraint, 4 5 (definition), 17.
Artificial multiplier, 5.
ASCII, 20.

b (vector of observations), 1.
B, 9 10 (dcfinition).
Begin (in options filc), 12-13.
BIGBHND, 15 (also sce Infinite Bound Size).
BL, 7 8 (definition).
BLAS, 21.
Level 2, 21.
Bnd, 2, 17.
BU. 8 (dcfinition).
Burroughs 6600 and 7600, 20.

C (general constraint matrix), 1.
in examples, 24 -25.
Crr, 2, 3.
Crx, 3.
€, 7 (defBinition).
CDC 6000 and 7000, 20.
Checklist of optional parameters, 16.
Cholesky factor, 3, 4, 9, 15.
printout c{ diagonals, 15.
CLAMDA, 10 (definition).
Cold Start, 8, 14 (definition).
Column interchanges, 4 (also sce Rank).
Comment (in optional parameter specification),
12,
Common blocks, list of, 21.
Cond Rz1, 5, 18.
Cond T, 5, 18.
Condition cstimator
for Iy, 5, 18.
for T, 5, 18.
Condition of working set, control of, 5-6.
Constrained stationary point, 3.
Constraint status indicator (see ISTATE).
Constraint violations, weighted sum of, 17.
Convexity, 2.
Crash Tolerance, 14 (definition).
Cray-1, 20.
CVEC, 8 (definition).
Cyber, 20.
Cycling, 10, 19.

Data General MV /8000, 20.

Data matrix (sce A and A).

DEC Systems 10 and 20, 20.

DEC VAX, 20.

Default values of optional parameters, checklist
of, 16.

of R, printout, 15.

of T, priutout, 15.
Distribution tape, format of, 20.
DOUBLE, 7.
Double precision

table of machine constants, 23.

version of code, 20.

E (printed constraint designation), 17.
End (iu options file), 12--13.
EPS, 22 (also sce ¢).
€ (machine precision), 14, 22. .
EQ (printed constraint status), 18, 22.
Equality constraint, 1, 8, 17, 18.
Error correction procedures, 19.
Estimnated rank :
of A, 4, 16, 18 (also sce Rank Tolerance).
of Ry, 16 (also sce Rank Tolerance).
Example 1 (a least-squares problem), 24.
Example 2 (a quadratic program), 25.
Example problems, 24-25.
Explicit linear term in objective function, 1, 10.
External file, use for option spccification, 12-13.

[ (transformed residual), 3, 4.
F (objective function), 1.
Facom, 20.
Feasibility phase, 2, 4, 8, 17, 19.
Feasibility Phage Iteration Limit, 10, 14 (defi-
nition).
Feasibility Tolerance, 2, 5, 8, 15 (definition),
19.

adjustment to avoid overflow, 19.
Feasible point, 15 (dcfinition).
Feasible-point problem, 1 (also see FP).
Final solution, printout, 15. !
Fixed variables, 2 (also sce EQ).
Formal paramneters of LSSOL, 7-10.
Formal specification of LSSOL, 7.
Format of distribution tape, 20.
Fortran

ANSI (1977), 20.

subroutines, naming convention, 21.
FP (problem type), 1, 7, 8, 16.
FR (printed constraint status), 18.
Free variables, 2.
Fyjitsu, 20.

Gabor, Zsa Zsa, 10.
General constraints, 1, 18.
Global minimum, 1.

H (Hessian matrix), 1.

HDWIRE, 22.

Hessian matrix, 1, 4.
semi-dcfinite example, 25.
upper-triangular factor, 3, 4, 9.

Hitachi, 20.

Honeywell, 20.

IBM
360/370 and 3033/3081, 16, 20, 22.
VS Fortran, 20.
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ICL 2000, 20.

Linplementation information, 20-23.

Infeasible problemn, 3 -4, 10, 17, 19.

Infeasibilities, weighted sum, 17.

Infinite lower or upper bound, 1, 8.

Infinite Bound Size, 8, 10, 15 (dcfinition).

Intinite Step Size, 15 (definition).

INFORM, 10 (dcfinition).

Initial working set, 5, 8, 8 (also sce Cold Start

and Warm Start).

Input parameter, invalid, 10.

Installation procedure, 20.

Invalid input paraneter, 10.

IOPTNS (options file number), 12-13.

ISTATE, 8 9 (dcfinition), 14, 18.
printout, 15.

ITER, 10 (dcfinition).

Iteration Limit, 15 (definition), 19.

Iters (scc Iteration Limit).

Itn (printed value), 17.

Itns (sec Iteration Limit).

IW, 10 (dcfinition).

Jadd (printcd value), 4, 17.
Jdel {printed value), 4, 17.

Keyword in option specification, 12.
KX, 2, 9 (definition), 186.

¢ (lower bound vector), 1, 8 (also see BL).
ta, 24.

L, 24.
L {printed constraint designation), 17 (also see
BL).

Lagr multiplier (printed value), 18.
Lagrange multiplier, 3, 10, 15, 18, 19, 24.
optimal, 3-4, 10, 18.
zero or small, 19,
LCLS (problem statement), 1.
Least Squares (see LS1).
Least-squares matrix, 1, 9 (also sce A and A).
Least-squares problem, 1.
example, 24.
LENIW, 11 (dcfinition).
LENW, 11 (definition).
Level 2 BLAS, 21.
Lin (printed value), 2, 17.
Linear constr, 18.
Linear least-squares problem, 1.
Linear objective function, 16.
Linear program, 1, 16.
Linear Program (sce LP).
Linear term in objective function, 1, 10.
Lines of code in LSSOL, 1, 20.
LL (printed constraint status), 18.
LNCON, 18.
Local minimum, 1 (also sec Weak minimum).
Lover Bound, 17, 18 (also see BL).
LP (problem type), 1, 7, 8, 16.
Lst (problem type), 1, 7, 8, 16, 24.
LS2 (problem type), 1, 7, 8, 16.
LS3 (problem type), 1, 7, 8, 18.
LS4 (problem type), 1, 7, 8, 18.
LSFILE, 12-13.

"..'_..:.h' e ST T,

RIS

Aalkal

LSOPTN, 13.
list, sample, 16.

LSqQ (sce LS1).

LSSOL
algorithm of, 2-6.
lines of code in, 1, 20.
parameters of, 7-11.
specification of, 7.

m, 1.
my, (number of general constraints), 1, 2, 5, 24.
my (number of general constraints in working
set), 2.
M, 7 (definition).
Machine constants
computation of, 21.
tables of, 22.
Machine dependencies in code, 21-23.
Machine precision {sce ¢).
Matrix factorizations, rontines for updating, 21.
MCHPAR, 22 (also sce Machine constants).
Method of LSSOL, description, 2-8.
Minimal sum of infeasibilities, 4, 17, 19.
Minimum abbtreviation (of optional parameter),
14.

n (number of variables), 1.
nggr (number of free variables), 2.
ngx (number of fixed variables), 2.
nz, 3,5, 17.
N, 7 (dcfinition).
Naming convention for Fortran subroutines, 21.
NBASE, 22.
NCLIN, 7 (definition) (also see m.).
NDIGIT, 22.
Negative steps, 6 (also see a).
NIN, 22.
Ninf (number of infeasibilities), 17.
No feasible point, 4, 10, 17, 19.
Nolist option, 13.
Non-existent lower or upper bound, 8.
None (in printout), 18.
Nonlinearly constrained optimization, 6.
NOUT, 22.
Norm Gf. 3, 17 (also sce Projected gradient).
Norm Gz1, 5, 17 (also sec Projected gradient).
NPSOL, 6.
NROWA, 7 (definition).
NROWC, 7 (dcfinition).
Null space, 3.
dimension of (sce nz).
Number of infeasibilities, 17.
Nz, 3, 5, 17.
Nz1, 5, 17.

0BJ, 10 (definition).
Objective, 17.
Objective function (F), 1.
data matrix (sec A and A).
linear, 186.
Objective matrix {sce A aud A).
Observation vector (b), 1.
Optimal Lagrange multiplier, 3-4 (definition),
10, 18.
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Optimal solition, 10.

Optimality phase, 2 (also sce Method of LSSOL).

Optimality Phase Iteration Limit, 10, 14 (defi-
nition).

Optimality test, 10.

Option-handling routines, 21.

Optional parameters, 12-16.
checklist and default values, 16.
cumulative changes, 13.
description, 14--16.

Options ble, 12-13.

Ordering of variables, 2 (also sce KX).

Orthogonal transformation, 2.

Overflow, 19.

p (scarch direction), 2, 3.
PFR, 21 3.
Parameter vector (see z).
Parameters of LSSOL, 7-11.
Phase 1 (sce Feasibility phase).
Phase 2 (sce Optimality phase).
Phrase (to modify optional parameter), 12.
Precision, machine (sce ¢).
Primal method, 2.
Prime Systems, 20.
Print Level, 10, 11, 15 (definition).
Printed output, description, 17-18.
Printout, coutrol of, 15.
Problem type (sec Problem Type).
Problem Type, 1, 15-16 (definition).
Projected gradient, 3, 10.

norm, 17.

Q.3
QPR1 2.
QP (problem type), 7, 8.
QP1 (problem type), 1, 7, 8, 16,
QP2 (problem type), 1, 7, 8, 16, 25.
qP3 (problem type), 1, 7, 8, 16.
QP4 (problem type), 1, 7, 8, 186.
QR factorization, 4.
Quadratic program, 1, 16.
example, 25.
Quadratic Program (problem type) (see QP2).
Qualifying phrase (in optional paramcter), 12.

R, 3, 4,9, 15 (also seec R;).

ordering of columns (see KX).

printout of diagonals, 15.
Ry, 4, 186.

condition estimate of, 18 (also sce Cond Rz1).
Rz, 3, 4,10, 17.

singular, 3, 4, 10, 17.
Rank, 4, 16.

determination, 16.
Rank Tolerance, 4, 16 (definition), 18.
REAL, 7.
Refercences, 26.
Re-ordering of variables, 2 (also sece KX).
Reset optional paramcters, 13-14.
Residual, 10, 18.
Residual vector, 3, 4, 10.
Reverse-triangular matrix, 2 (also sce T).
RMAX, 22.

R IPR .~

MOV SO PP PP, v

RMIN, 22.

RTEPS, 22.
RTMAX, 22.°
RTMIN, 22.

Scarch direction (p), 2.
Second-dcrivative matrix, 1 (also see Hessian ma-
trix).

Semi-definite Hessian matrix, example, 25.
Sequential quadratic programming method, 6.
Simplex method, 2, 5.
Simplex steps, 2, 5.
Sint (weighted sum of infeasibilities), 17.
Single precision

table of inachine constants, 23.

version of code, 20. 2
Singular Rz, 3, 4, 10, 17. .
Small Lagrange multiplier, 19. '
Source files, list, 20.
Specification of LSSOL, 7.
Standard simplex method, 2.
State, 18 (also sec ISTATE).
Stationary point, 3.
Status indicator for constraints (sece ISTATE).

Step (printed value), 17 (also see Step length). .
Step length (a), 2, 4, 17. R
choice of, 4, 5. ..:
Strong local minimum, 1, 10. T
Sum of infcasibilities, 3-4. o
minimum, 17. B

weighted, 17. _E
Synonyms (for optional parameters), 12. e
T,?2,5.

condition estimate, 18 (also see Cond T).
printout of diagonals, 15.
T (printed constraint desiguation), 17 (also see
Temporary bound).
Tape
characteristics, 20.
format 20.
Temporary bound, 5, 17.
TQ factorization, 2, 5, 15.
Transformed residual vector (f), 3, 4, 10.
Trapezoidal matrix, 1, 9 (also see Triangular fac- i
tor).
Triangular factor, 3, 4, 9, 15.
of Hessian as data matrix, 9.
Two-phase primal method, 2,

u (upper bound vector), 1, 17 {also see BU).
up, 24. .,
ur, 24,

U (printed constraint designation), 17.

UL (printed constraint status), 18. o

Unbounded SR
objective function, 10, 15. v
solution, 1, 10. -
step, 15. P

Underflow, 19. -

Unique solution, 1, 10.

Univac 1100, 20.

Unknowns, vector of (sce z and X).

Updating matrix factorizations, routines for, 21.




K 3nui e AR A e dan 2\ A RSl i A iaiie S Aine & 4 i B i i Sk e vt 2 M Mk it

38 User’s Guide for LSSOL 1.0 "

Upper bound, 18 (also sec u and BU). i :

Upper-trapezoidal matrix, 1, 9 (also see Triang- Sy g
ular factor).

Upper-triangular factor (sce Triangular factor).

-
Valid option strings, examples of, 12. oA
Value, 18. o
VARBL, 13.

Variable, 18. =
Variance-covariance matrix, 9. B
Vector "

of observations (b), 1 (also see B).

of unknowns (z), 1 (also see X).
Vertex, 2, 3, 17.
Violations, constraint (sce Infeasibilities).

v, 11 (definition).
Warm Start, 6, 8, 14 (definition), 19. o
Weak minimum, 1, 10. I
example of, 24.
Weak LP solution (sce Weak minimum).
Weak LS solution (see Weak minimum). )
Weak QP solution (sec Weak minimum]}. &2
Weighted sum of infeasibilities, 4, 17 (also sce
Infeasible problem).
WMACH, 22 (also sce Machine constants).
Working precision, 7 (also see €).
Working set
changes in, 4,
condition estimate, 18 (also see Cond T).

definition, 2. .
Workspace parameters of LSSOL, 10-11. =
z (vector of unknowns), 1. -

printout, 18. '.{

X, 9 (definition). N
Y, 2.

Z (basis for null space), 2 (also see Null space).
dimension of (see nz).

Zy, 4-5, 17. oo
ZTg:r. 5 (also see Projected gradient).
Z3, 4-5. e

Z (printed constraint designation), 17.
Zero Lagrange multiplier, 19 (also see Lagrange
multiplier). -

-- (printed constraint status), 18 (also see Infea-
sible problem).

++ (printed constraint status), 18 (also see Infea- S
sible problem). R
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treatment of singularity.

LSSOL may also be used for linear programming, and to find a feasible point
with respect to a set of linear inequality constraints. LSSOL treats all
matrices as dense, and hence is not intended for large sparse problems.
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